Tuesday, 4 July 2017

Moving Average Accuracy


Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como variante Dim Counter Como Inteiro Dim Acumulação como único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar do seguinte. Como usar uma média móvel para comprar estoques A média móvel (MA) é uma ferramenta de análise técnica simples que suaviza os dados de preços Criando um preço médio constantemente atualizado. A média é tomada ao longo de um período específico de tempo, como 10 dias, 20 minutos, 30 semanas, ou qualquer período de tempo que o comerciante escolhe. Há vantagens em usar uma média móvel em sua negociação, bem como opções sobre que tipo de média móvel para usar. Movendo estratégias médias também são populares e podem ser adaptados a qualquer período de tempo, adequando tanto os investidores de longo prazo e comerciantes de curto prazo. Por que usar uma média móvel Uma média móvel pode ajudar a reduzir a quantidade de ruído em um gráfico de preços. Olhe para a direção da média móvel para obter uma idéia básica de que forma o preço está se movendo. Angled up e preço está subindo (ou foi recentemente) em geral, inclinado para baixo e preço está se movendo para baixo no geral, movendo-se de lado eo preço é provável em um intervalo. Uma média móvel também pode agir como suporte ou resistência. Em uma tendência de alta, uma média móvel de 50 dias, 100 dias ou 200 dias pode atuar como um nível de suporte, como mostrado na figura abaixo. Isto é porque os atos médios como um assoalho (sustentação), assim que o preço salta acima fora dele. Em uma tendência de baixa uma média móvel pode atuar como resistência como um teto, o preço atinge-lo e, em seguida, começa a cair novamente. O preço costuma sempre respeitar a média móvel desta forma. O preço pode percorrê-lo ligeiramente ou parar e inverter antes de alcançá-lo. Como uma orientação geral, se o preço está acima de uma média móvel a tendência é para cima. Se o preço está abaixo de uma média móvel a tendência é para baixo. As médias móveis podem ter diferentes comprimentos embora (discutido em breve), então um pode indicar uma tendência de alta, enquanto outro indica uma tendência de baixa. Tipos de médias móveis Uma média móvel pode ser calculada de diferentes maneiras. Uma média móvel simples de cinco dias (SMA) simplesmente acrescenta os cinco preços de fechamento diários mais recentes e divide-os por cinco para criar uma nova média a cada dia. Cada média é conectada ao seguinte, criando a linha fluindo singular. Outro tipo popular de média móvel é a média móvel exponencial (EMA). O cálculo é mais complexo, mas basicamente aplica mais ponderação aos preços mais recentes. Trace um SMA de 50 dias e um EMA de 50 dias no mesmo gráfico e você notará que o EMA reage mais rapidamente às mudanças de preço do que o SMA, devido à ponderação adicional nos dados de preços recentes. Software de gráficos e plataformas de negociação fazem os cálculos, portanto nenhuma matemática manual é necessária para usar um MA. Um tipo de MA não é melhor do que outro. Um EMA pode funcionar melhor em um estoque ou mercado financeiro por um tempo, e em outras vezes um SMA pode trabalhar melhor. O período de tempo escolhido para uma média móvel também desempenhará um papel significativo em quão eficaz é (independentemente do tipo). Comprimento médio móvel Comprimentos médios móveis comuns são 10, 20, 50, 100 e 200. Esses comprimentos podem ser aplicados a qualquer quadro de tempo de gráfico (um minuto, diário, semanal, etc), dependendo do horizonte comercial comerciantes. O período de tempo ou o comprimento que você escolhe para uma média móvel, também chamado de período de look back, pode desempenhar um papel importante em quão eficaz é. Um MA com um curto período de tempo vai reagir muito mais rápido às mudanças de preços do que um MA com um longo olhar para trás período. Na figura abaixo, a média móvel de 20 dias acompanha mais de perto o preço real do que os 100 dias. Os 20 dias podem ser de benefício analítico para um trader de curto prazo, uma vez que segue o preço mais de perto e, portanto, produz menos defasagem do que a média móvel de longo prazo. Lag é o tempo necessário para que uma média móvel sinalize uma reversão potencial. Lembre-se, como uma diretriz geral, quando o preço está acima de uma média móvel a tendência é considerada para cima. Assim, quando o preço cai abaixo dessa média móvel, sinaliza uma reversão potencial com base nesse MA. Uma média móvel de 20 dias fornecerá muitos mais sinais de reversão do que uma média móvel de 100 dias. Uma média móvel pode ser qualquer comprimento, 15, 28, 89, etc. Ajustar a média móvel para fornecer sinais mais precisos em dados históricos pode ajudar a criar melhores sinais futuros. Estratégias de Negociação - Crossovers Crossovers são uma das principais estratégias de média móvel. O primeiro tipo é um crossover do preço. Isto foi discutido anteriormente, e é quando o preço cruza acima ou abaixo de uma média móvel para sinalizar uma mudança potencial na tendência. Outra estratégia é aplicar duas médias móveis a um gráfico, um mais longo e um mais curto. Quando o MA mais curto cruza acima do MA mais a longo prazo é um sinal da compra porque indica a tendência está deslocando acima. Isto é sabido como uma cruz dourada. Quando o MA mais curto cruza abaixo do MA a mais longo prazo é um sinal de venda como indica a tendência está deslocando para baixo. Isto é conhecido como um cruzamento de morte / morte. As médias móveis são calculadas com base em dados históricos, e nada sobre o cálculo é de natureza preditiva. Conseqüentemente os resultados que usam médias moventes podem ser aleatórios - às vezes o mercado parece respeitar a sustentação do MA / resistência e sinais do comércio. E outras vezes não mostra respeito. Um grande problema é que se a ação de preço torna-se agitada o preço pode balançar para frente e para trás gerando vários sinais de inversão de tendência / comércio. Quando isso ocorre o seu melhor para deixar de lado ou utilizar outro indicador para ajudar a esclarecer a tendência. A mesma coisa pode ocorrer com crossovers MA, onde o MAs ficar emaranhado por um período de tempo desencadear múltiplos (gostando perder) comércios. As médias móveis funcionam muito bem em condições de forte tendência, mas muitas vezes em condições precárias ou variadas. Ajustar o período de tempo pode ajudar neste temporariamente, embora em algum momento esses problemas são susceptíveis de ocorrer independentemente do período de tempo escolhido para o MA (s). Uma média móvel simplifica dados de preço, suavizando-o e criando uma linha de fluxo. Isso pode tornar as tendências de isolamento mais fáceis. As médias móveis exponenciais reagem mais rapidamente às mudanças de preços do que uma média móvel simples. Em alguns casos isso pode ser bom, e em outros pode causar sinais falsos. As médias móveis com um período de retrocesso mais curto (20 dias, por exemplo) também responderão mais rapidamente às alterações de preços do que uma média com um período de exibição mais longo (200 dias). Os crossovers médios móveis são uma estratégia popular para entradas e saídas. MAs também podem destacar áreas de potencial suporte ou resistência. Embora isto possa parecer previsível, as médias móveis são sempre baseadas em dados históricos e simplesmente mostram o preço médio durante um certo período de tempo. O que é a diferença entre a média móvel ea média móvel ponderada A média móvel de 5 períodos, baseada nos preços acima, Ser calculado utilizando a seguinte fórmula: Com base na equação acima, o preço médio durante o período listado acima foi de 90,66. Usando médias móveis é um método eficaz para eliminar flutuações de preços fortes. A principal limitação é que os pontos de dados de dados mais antigos não são ponderados de forma diferente dos pontos de dados próximos ao início do conjunto de dados. É aqui que as médias móveis ponderadas entram em jogo. As médias ponderadas atribuem uma ponderação mais pesada a pontos de dados mais atuais, uma vez que são mais relevantes do que pontos de dados no passado distante. A soma da ponderação deve somar 1 (ou 100). No caso da média móvel simples, as ponderações são distribuídas igualmente, razão pela qual não são mostradas na tabela acima. Preço de Fechamento da AAPL A média ponderada é calculada multiplicando-se o preço dado pela ponderação associada e somando-se os valores. No exemplo acima, a média móvel ponderada de 5 dias seria de 90,62. Neste exemplo, o ponto de dados recente recebeu a maior ponderação de 15 pontos arbitrários. Você pode pesar os valores fora de qualquer valor que você vê o ajuste. O menor valor da média ponderada acima em relação à média simples sugere que a recente pressão de venda poderia ser mais significativa do que alguns comerciantes antecipam. Para a maioria dos comerciantes, a escolha mais popular ao usar médias móveis ponderadas é usar uma maior ponderação para valores recentes. (Para obter mais informações, consulte o Tutorial Moving Average) Leia sobre a diferença entre as médias móveis exponenciais e médias móveis ponderadas, dois indicadores de suavização que. A única diferença entre estes dois tipos de média móvel é a sensibilidade que cada um mostra às mudanças nos dados usados. Ler resposta Aprenda sobre o cálculo ea interpretação de médias ponderadas, incluindo como calcular uma média ponderada usando a Microsoft. Leia Resposta Veja por que médias móveis provaram ser vantajosas para comerciantes e analistas e úteis quando aplicadas a gráficos de preços e. Leia a resposta Aprenda como os comerciantes e investidores usam alfa ponderada para identificar o momento de um preço de ações e se os preços se moverão mais alto. Leia a resposta Conheça algumas das limitações inerentes e possíveis erros na análise da média móvel no estoque técnico. Definição do Modelo de Média Móvel Ponderada Resposta No modelo de média móvel ponderada (estratégia de previsão 14), cada valor histórico é ponderado com um fator do grupo de ponderação no perfil de previsão univariada. Fórmula para a Média Móvel Ponderada O modelo de média móvel ponderada permite que você pese dados históricos recentes mais pesadamente do que dados mais antigos ao determinar a média. Você faz isso se os dados mais recentes forem mais representativos da demanda futura do que os dados mais antigos. Portanto, o sistema é capaz de reagir mais rapidamente a uma mudança de nível. Uso A precisão deste modelo depende em grande parte de sua escolha de fatores de ponderação. Se o padrão da série de tempo mudar, você também deve adaptar os fatores de ponderação. Ao criar um grupo de ponderação, você insere os fatores de ponderação como porcentagens. A soma dos fatores de ponderação não precisa ser 100. Nenhuma previsão ex-post é calculada com esta estratégia de previsão. Modelos de média móvel e de suavização exponencial Como um primeiro passo para ir além dos modelos de média, aleatória e linear, Padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é localmente estacionária com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e então usamos isso como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio e o modelo aleatório-andar-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é muitas vezes chamado de uma versão quotsmoothedquot da série original, porque a média de curto prazo tem o efeito de suavizar os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série temporal Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) / 2, o que implica que a estimativa da média local tende a ficar para trás Valor real da média local em cerca de (m1) / 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) / 2 relativa ao período para o qual a previsão é calculada: é a quantidade de tempo em que as previsões tenderão a ficar para trás dos pontos de inflexão na dados. Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais pequenos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentarmos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: A média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é de 3 ((51) / 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se alargar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais um efeito retardado: A idade média é agora de 5 períodos ((91) / 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de inflexão em cerca de 10 períodos. Qual a quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações igualmente e completamente ignora todas as observações anteriores. (Voltar ao início da página.) Marrons Simples Exponencial Suavização (exponencialmente ponderada média móvel) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que, se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1/945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado através da avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1/945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma dada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Utilizando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é de 1 / 0.2961 3.4 períodos, que é semelhante ao de um 6-termo simples de movimento média. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA eo modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoavelmente aparente, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. De modo que a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quimétrico ARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante à série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada ao longo de todo o período de estimação. Não é possível fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunção com uma transformação de logaritmo natural, ou pode basear-se noutras informações independentes relativas às perspectivas de crescimento a longo prazo . (Retornar ao início da página.) Browns Linear (ie double) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que geralmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências a curto prazo Se uma série exibe uma taxa variável de crescimento ou um padrão cíclico que se destaca claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo de suavização exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo). A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida pela aplicação de suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, enganar um pouco e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não são permitidos variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é computada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de alisamento de tendência 946 é análoga à da constante de alisamento de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é usada na estimativa do nível local da série, a idade média dos dados que é usada na estimativa da tendência local é proporcional a 1/946, embora não exatamente igual a isto. Neste caso, isto é 1 / 0.006 125. Este número é muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100 , Assim que este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pelo ajuste do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto estar estimando uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de suavização constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo uma média da tendência ao longo dos últimos 20 períodos aproximadamente. Here8217s o que o lote de previsão parece se ajustarmos 946 0.1 mantendo 945 0.3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Alisamento exponencial simples com alfa 0,5 (D) Alisamento exponencial simples com alfa 0,3 (E) Alisamento exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, então realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos quanto à existência de uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também fornecerá mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar da sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 se torna maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)

No comments:

Post a Comment